Purpose
To extract from the system pencil
( A-lambda*E B )
S(lambda) = ( )
( C D )
a regular pencil Af-lambda*Ef which has the finite Smith zeros of
S(lambda) as generalized eigenvalues. The routine also computes
the orders of the infinite Smith zeros and determines the singular
and infinite Kronecker structure of system pencil, i.e., the right
and left Kronecker indices, and the multiplicities of infinite
eigenvalues.
Specification
SUBROUTINE AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, NKROR,
$ NINFE, NKROL, INFZ, KRONR, INFE, KRONL,
$ TOL, IWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER EQUIL
INTEGER DINFZ, INFO, L, LDA, LDB, LDC, LDD, LDE, LDWORK,
$ M, N, NFZ, NINFE, NIZ, NKROL, NKROR, NRANK, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER INFE(*), INFZ(*), IWORK(*), KRONL(*), KRONR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), E(LDE,*)
Arguments
Mode Parameters
EQUIL CHARACTER*1
Specifies whether the user wishes to balance the system
matrix as follows:
= 'S': Perform balancing (scaling);
= 'N': Do not perform balancing.
Input/Output Parameters
L (input) INTEGER
The number of rows of matrices A, B, and E. L >= 0.
N (input) INTEGER
The number of columns of matrices A, E, and C. N >= 0.
M (input) INTEGER
The number of columns of matrix B. M >= 0.
P (input) INTEGER
The number of rows of matrix C. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading L-by-N part of this array must
contain the state dynamics matrix A of the system.
On exit, the leading NFZ-by-NFZ part of this array
contains the matrix Af of the reduced pencil.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,L).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading L-by-N part of this array must
contain the descriptor matrix E of the system.
On exit, the leading NFZ-by-NFZ part of this array
contains the matrix Ef of the reduced pencil.
LDE INTEGER
The leading dimension of array E. LDE >= MAX(1,L).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading L-by-M part of this array must
contain the input/state matrix B of the system.
On exit, this matrix does not contain useful information.
LDB INTEGER
The leading dimension of array B.
LDB >= MAX(1,L) if M > 0;
LDB >= 1 if M = 0.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the state/output matrix C of the system.
On exit, this matrix does not contain useful information.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading P-by-M part of this array must contain the
direct transmission matrix D of the system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
NFZ (output) INTEGER
The number of finite zeros.
NRANK (output) INTEGER
The normal rank of the system pencil.
NIZ (output) INTEGER
The number of infinite zeros.
DINFZ (output) INTEGER
The maximal multiplicity of infinite Smith zeros.
NKROR (output) INTEGER
The number of right Kronecker indices.
NINFE (output) INTEGER
The number of elementary infinite blocks.
NKROL (output) INTEGER
The number of left Kronecker indices.
INFZ (output) INTEGER array, dimension (N+1)
The leading DINFZ elements of INFZ contain information
on the infinite elementary divisors as follows:
the system has INFZ(i) infinite elementary divisors of
degree i in the Smith form, where i = 1,2,...,DINFZ.
KRONR (output) INTEGER array, dimension (N+M+1)
The leading NKROR elements of this array contain the
right Kronecker (column) indices.
INFE (output) INTEGER array, dimension (1+MIN(L+P,N+M))
The leading NINFE elements of INFE contain the
multiplicities of infinite eigenvalues.
KRONL (output) INTEGER array, dimension (L+P+1)
The leading NKROL elements of this array contain the
left Kronecker (row) indices.
Tolerances
TOL DOUBLE PRECISION
A tolerance used in rank decisions to determine the
effective rank, which is defined as the order of the
largest leading (or trailing) triangular submatrix in the
QR (or RQ) factorization with column (or row) pivoting
whose estimated condition number is less than 1/TOL.
If the user sets TOL <= 0, then default tolerances are
used instead, as follows: TOLDEF = L*N*EPS in TG01FD
(to determine the rank of E) and TOLDEF = (L+P)*(N+M)*EPS
in the rest, where EPS is the machine precision
(see LAPACK Library routine DLAMCH). TOL < 1.
Workspace
IWORK INTEGER array, dimension (N+max(1,M))
On output, IWORK(1) contains the normal rank of the
transfer function matrix.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= max( 4*(L+N), LDW ), if EQUIL = 'S',
LDWORK >= LDW, if EQUIL = 'N', where
LDW = max(L+P,M+N)*(M+N) + max(1,5*max(L+P,M+N)).
For optimum performance LDWORK should be larger.
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
The routine extracts from the system matrix of a descriptor
system (A-lambda*E,B,C,D) a regular pencil Af-lambda*Ef which
has the finite zeros of the system as generalized eigenvalues.
The procedure has the following main computational steps:
(a) construct the (L+P)-by-(N+M) system pencil
S(lambda) = ( B A )-lambda*( 0 E );
( D C ) ( 0 0 )
(b) reduce S(lambda) to S1(lambda) with the same finite
zeros and right Kronecker structure but with E
upper triangular and nonsingular;
(c) reduce S1(lambda) to S2(lambda) with the same finite
zeros and right Kronecker structure but with D of
full row rank;
(d) reduce S2(lambda) to S3(lambda) with the same finite zeros
and with D square invertible;
(e) perform a unitary transformation on the columns of
S3(lambda) = (A-lambda*E B) in order to reduce it to
( C D)
(Af-lambda*Ef X), with Y and Ef square invertible;
( 0 Y)
(f) compute the right and left Kronecker indices of the system
matrix, which together with the multiplicities of the
finite and infinite eigenvalues constitute the
complete set of structural invariants under strict
equivalence transformations of a linear system.
References
[1] P. Misra, P. Van Dooren and A. Varga.
Computation of structural invariants of generalized
state-space systems.
Automatica, 30, pp. 1921-1936, 1994.
Numerical Aspects
The algorithm is backward stable (see [1]).Further Comments
In order to compute the finite Smith zeros of the system explicitly, a call to this routine may be followed by a call to the LAPACK Library routines DGEGV or DGGEV.Example
Program Text
* AG08BD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER LMAX, MMAX, NMAX, PMAX
PARAMETER ( LMAX = 20, MMAX = 20, NMAX = 20, PMAX = 20 )
INTEGER LDA, LDAEMX, LDB, LDC, LDD, LDE, LDQ, LDZ
PARAMETER ( LDA = LMAX, LDB = LMAX, LDC = PMAX,
$ LDD = PMAX, LDE = LMAX, LDQ = 1, LDZ = 1,
$ LDAEMX = MAX( PMAX + LMAX, NMAX + MMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( 4*( LMAX + NMAX ), 8*NMAX,
$ LDAEMX*LDAEMX +
$ MAX( 1, 5*LDAEMX ) ) )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER DINFZ, I, INFO, J, L, M, N, NFZ, NINFE, NIZ,
$ NKROL, NKROR, NRANK, P
CHARACTER*1 EQUIL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), ALFI(NMAX), ALFR(NMAX),
$ ASAVE(LDA,NMAX), B(LDB,MMAX), BETA(NMAX),
$ BSAVE(LDB,MMAX), C(LDC,NMAX), CSAVE(LDC,NMAX),
$ D(LDD,MMAX), DSAVE(LDD,MMAX), DWORK(LDWORK),
$ E(LDE,NMAX), ESAVE(LDE,NMAX), Q(LDQ,1), Z(LDZ,1)
INTEGER INFE(1+LMAX+PMAX), INFZ(NMAX+1),
$ IWORK(NMAX+MMAX), KRONL(LMAX+PMAX+1),
$ KRONR(NMAX+MMAX+1)
* .. External Subroutines ..
EXTERNAL AG08BD, DGEGV, DLACPY
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) L, N, M, P, TOL, EQUIL
IF( ( L.LT.0 .OR. L.GT.LMAX ) .OR. ( N.LT.0 .OR. N.GT.NMAX ) )
$ THEN
WRITE ( NOUT, FMT = 99972 ) L, N
ELSE
IF( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99971 ) M
ELSE
IF( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99970 ) P
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
CALL DLACPY( 'F', L, N, A, LDA, ASAVE, LDA )
CALL DLACPY( 'F', L, N, E, LDE, ESAVE, LDE )
CALL DLACPY( 'F', L, M, B, LDB, BSAVE, LDB )
CALL DLACPY( 'F', P, N, C, LDC, CSAVE, LDC )
CALL DLACPY( 'F', P, M, D, LDD, DSAVE, LDD )
* Compute poles (call the routine with M = 0, P = 0).
CALL AG08BD( EQUIL, L, N, 0, 0, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ,
$ NKROR, NINFE, NKROL, INFZ, KRONR, INFE,
$ KRONL, TOL, IWORK, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99968 ) NIZ
DO 10 I = 1, DINFZ
WRITE ( NOUT, FMT = 99967 ) INFZ(I), I
10 CONTINUE
WRITE ( NOUT, FMT = 99962 ) NINFE
IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99958 )
$ ( INFE(I), I = 1,NINFE )
IF( NFZ.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99965 )
ELSE
WRITE ( NOUT, FMT = 99966 )
WRITE ( NOUT, FMT = 99990 )
DO 20 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( A(I,J), J = 1,NFZ )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( E(I,J), J = 1,NFZ )
30 CONTINUE
CALL DGEGV( 'No vectors', 'No vectors', NFZ, A,
$ LDA, E, LDE, ALFR, ALFI, BETA, Q,
$ LDQ, Z, LDZ, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 40 I = 1, NFZ
IF( ALFI(I).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99980 )
$ ALFR(I)/BETA(I)
ELSE
WRITE ( NOUT, FMT = 99979 )
$ ALFR(I)/BETA(I),
$ ALFI(I)/BETA(I)
END IF
40 CONTINUE
END IF
END IF
END IF
CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA )
CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE )
* Check the observability and compute the ordered set of
* the observability indices (call the routine with M = 0).
CALL AG08BD( EQUIL, L, N, 0, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ,
$ NKROR, NINFE, NKROL, INFZ, KRONR, INFE,
$ KRONL, TOL, IWORK, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99964 ) NIZ
DO 50 I = 1, DINFZ
WRITE ( NOUT, FMT = 99967 ) INFZ(I), I
50 CONTINUE
WRITE ( NOUT, FMT = 99962 ) NINFE
IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99960 )
$ ( INFE(I), I = 1,NINFE )
WRITE ( NOUT, FMT = 99994 ) ( KRONL(I), I = 1,NKROL )
IF( NFZ+NINFE.EQ.0 ) WRITE ( NOUT, FMT = 99993 )
IF( NFZ.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99957 )
ELSE
WRITE ( NOUT, FMT = 99991 )
WRITE ( NOUT, FMT = 99990 )
DO 60 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( A(I,J), J = 1,NFZ )
60 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 70 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( E(I,J), J = 1,NFZ )
70 CONTINUE
CALL DGEGV( 'No vectors', 'No vectors', NFZ, A,
$ LDA, E, LDE, ALFR, ALFI, BETA, Q,
$ LDQ, Z, LDZ, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 80 I = 1, NFZ
IF( ALFI(I).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99980 )
$ ALFR(I)/BETA(I)
ELSE
WRITE ( NOUT, FMT = 99979 )
$ ALFR(I)/BETA(I),
$ ALFI(I)/BETA(I)
END IF
80 CONTINUE
END IF
END IF
END IF
CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA )
CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE )
CALL DLACPY( 'F', P, N, CSAVE, LDC, C, LDC )
* Check the controllability and compute the ordered set of
* the controllability indices (call the routine with P = 0)
CALL AG08BD( EQUIL, L, N, M, 0, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ,
$ NKROR, NINFE, NKROL, INFZ, KRONR, INFE,
$ KRONL, TOL, IWORK, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99963 ) NIZ
DO 90 I = 1, DINFZ
WRITE ( NOUT, FMT = 99967 ) INFZ(I), I
90 CONTINUE
WRITE ( NOUT, FMT = 99962 ) NINFE
IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99959 )
$ ( INFE(I), I = 1,NINFE )
WRITE ( NOUT, FMT = 99988 ) ( KRONR(I), I = 1,NKROR )
IF( NFZ+NINFE.EQ.0 ) WRITE ( NOUT, FMT = 99987 )
IF( NFZ.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99956 )
ELSE
WRITE ( NOUT, FMT = 99985 )
WRITE ( NOUT, FMT = 99990 )
DO 100 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( A(I,J), J = 1,NFZ )
100 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 110 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( E(I,J), J = 1,NFZ )
110 CONTINUE
CALL DGEGV( 'No vectors', 'No vectors', NFZ, A,
$ LDA, E, LDE, ALFR, ALFI, BETA, Q,
$ LDQ, Z, LDZ, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99982 )
DO 120 I = 1, NFZ
IF( ALFI(I).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99980 )
$ ALFR(I)/BETA(I)
ELSE
WRITE ( NOUT, FMT = 99979 )
$ ALFR(I)/BETA(I),
$ ALFI(I)/BETA(I)
END IF
120 CONTINUE
END IF
END IF
END IF
CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA )
CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE )
CALL DLACPY( 'F', L, M, BSAVE, LDB, B, LDB )
CALL DLACPY( 'F', P, N, CSAVE, LDC, C, LDC )
CALL DLACPY( 'F', P, M, DSAVE, LDD, D, LDD )
* Compute the structural invariants of the given system.
CALL AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ,
$ NKROR, NINFE, NKROL, INFZ, KRONR, INFE,
$ KRONL, TOL, IWORK, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF( L.EQ.N ) THEN
WRITE ( NOUT, FMT = 99969 ) NRANK - N
ELSE
WRITE ( NOUT, FMT = 99955 ) NRANK
END IF
WRITE ( NOUT, FMT = 99984 ) NFZ
IF( NFZ.GT.0 ) THEN
* Compute the finite zeros of the given system.
* Workspace: need 8*NFZ.
WRITE ( NOUT, FMT = 99983 )
WRITE ( NOUT, FMT = 99990 )
DO 130 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( A(I,J), J = 1,NFZ )
130 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 140 I = 1, NFZ
WRITE ( NOUT, FMT = 99989 )
$ ( E(I,J), J = 1,NFZ )
140 CONTINUE
CALL DGEGV( 'No vectors', 'No vectors', NFZ, A,
$ LDA, E, LDE, ALFR, ALFI, BETA, Q,
$ LDQ, Z, LDZ, DWORK, LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99981 )
DO 150 I = 1, NFZ
IF( ALFI(I).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99980 )
$ ALFR(I)/BETA(I)
ELSE
WRITE ( NOUT, FMT = 99979 )
$ ALFR(I)/BETA(I),
$ ALFI(I)/BETA(I)
END IF
150 CONTINUE
END IF
END IF
WRITE ( NOUT, FMT = 99978 ) NIZ
DO 160 I = 1, DINFZ
WRITE ( NOUT, FMT = 99977 ) INFZ(I), I
160 CONTINUE
WRITE ( NOUT, FMT = 99962 ) NINFE
IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99961 )
$ ( INFE(I), I = 1,NINFE )
WRITE ( NOUT, FMT = 99976 ) NKROR
IF( NKROR.GT.0 ) WRITE ( NOUT, FMT = 99975 )
$ ( KRONR(I), I = 1,NKROR )
WRITE ( NOUT, FMT = 99974 ) NKROL
IF( NKROL.GT.0 ) WRITE ( NOUT, FMT = 99973 )
$ ( KRONL(I), I = 1,NKROL )
END IF
END IF
END IF
END IF
*
STOP
*
99999 FORMAT (' AG08BD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AG08BD = ',I2)
99997 FORMAT (' INFO on exit from DGEGV = ',I2)
99996 FORMAT (/'Unobservable finite eigenvalues'/
$ ' real part imag part ')
99995 FORMAT (/' The matrix Ef is ')
99994 FORMAT (/' The left Kronecker indices of [A-lambda*E;C] are ',
$ /(20(I3,2X)))
99993 FORMAT (/' The system (A-lambda*E,C) is completely observable ')
99991 FORMAT (/' The finite output decoupling zeros are the eigenvalues'
$ ,' of the pair (Af,Ef). ')
99990 FORMAT (/' The matrix Af is ')
99989 FORMAT (20(1X,F8.4))
99988 FORMAT (/' The right Kronecker indices of [A-lambda*E,B] are ',
$ /( 20(I3,2X) ) )
99987 FORMAT (/' The system (A-lambda*E,B) is completely controllable ')
99985 FORMAT (/' The input decoupling zeros are the eigenvalues of the',
$ ' pair (Af,Ef). ')
99984 FORMAT (/' The number of finite zeros = ',I3)
99983 FORMAT (/' The finite zeros are the eigenvalues ',
$ 'of the pair (Af,Ef)')
99982 FORMAT (/'Uncontrollable finite eigenvalues'/
$ ' real part imag part ')
99981 FORMAT (/'Finite zeros'/' real part imag part ')
99980 FORMAT (1X,F9.4)
99979 FORMAT (1X,F9.4,6X,F9.4)
99978 FORMAT (//' The number of infinite zeros = ',I3)
99977 FORMAT ( I4,' infinite zero(s) of order ',I3)
99976 FORMAT (/' The number of right Kronecker indices = ',I3)
99975 FORMAT (/' Right Kronecker indices of [A-lambda*E,B;C,D]'
$ ,' are ', /(20(I3,2X)))
99974 FORMAT (/' The number of left Kronecker indices = ',I3)
99973 FORMAT (/' The left Kronecker indices of [A-lambda*E,B;C,D]'
$ ,' are ', /(20(I3,2X)))
99972 FORMAT (/' L or N is out of range.',/' L = ', I5, ' N = ',I5)
99971 FORMAT (/' M is out of range.',/' M = ',I5)
99970 FORMAT (/' P is out of range.',/' P = ',I5)
99969 FORMAT (/' Normal rank of transfer function matrix = ',I3)
99968 FORMAT (//' The number of infinite poles = ',I3)
99967 FORMAT ( I4,' infinite pole(s) of order ',I3)
99966 FORMAT (/' The finite poles are the eigenvalues',
$ ' of the pair (Af,Ef). ')
99965 FORMAT (/' The system has no finite poles ')
99964 FORMAT (//' The number of unobservable infinite poles = ',I3)
99963 FORMAT (//' The number of uncontrollable infinite poles = ',I3)
99962 FORMAT (/' The number of infinite Kronecker blocks = ',I3)
99961 FORMAT (/' Multiplicities of infinite eigenvalues of '
$ ,'[A-lambda*E,B;C,D] are ', /(20(I3,2X)))
99960 FORMAT (/' Multiplicities of infinite eigenvalues of '
$ ,'[A-lambda*E;C] are ', /(20(I3,2X)))
99959 FORMAT (/' Multiplicities of infinite eigenvalues of '
$ ,'[A-lambda*E,B] are ', /(20(I3,2X)))
99958 FORMAT (/' Multiplicities of infinite eigenvalues of A-lambda*E'
$ ,' are ', /(20(I3,2X)))
99957 FORMAT (/' The system (A-lambda*E,C) has no finite output',
$ ' decoupling zeros ')
99956 FORMAT (/' The system (A-lambda*E,B) has no finite input',
$ ' decoupling zeros ')
99955 FORMAT (/' Normal rank of system pencil = ',I3)
END
Program Data
AG08BD EXAMPLE PROGRAM DATA
9 9 3 3 1.e-7 N
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
-1 0 0
0 0 0
0 0 0
0 -1 0
0 0 0
0 0 0
0 0 -1
0 0 0
0 0 0
0 1 1 0 3 4 0 0 2
0 1 0 0 4 0 0 2 0
0 0 1 0 -1 4 0 -2 2
1 2 -2
0 -1 -2
0 0 0
Program Results
AG08BD EXAMPLE PROGRAM RESULTS
The number of infinite poles = 6
0 infinite pole(s) of order 1
3 infinite pole(s) of order 2
The number of infinite Kronecker blocks = 3
Multiplicities of infinite eigenvalues of A-lambda*E are
3 3 3
The system has no finite poles
The number of unobservable infinite poles = 4
0 infinite pole(s) of order 1
2 infinite pole(s) of order 2
The number of infinite Kronecker blocks = 3
Multiplicities of infinite eigenvalues of [A-lambda*E;C] are
1 3 3
The left Kronecker indices of [A-lambda*E;C] are
0 1 1
The system (A-lambda*E,C) has no finite output decoupling zeros
The number of uncontrollable infinite poles = 0
The number of infinite Kronecker blocks = 3
Multiplicities of infinite eigenvalues of [A-lambda*E,B] are
1 1 1
The right Kronecker indices of [A-lambda*E,B] are
2 2 2
The system (A-lambda*E,B) has no finite input decoupling zeros
Normal rank of transfer function matrix = 2
The number of finite zeros = 1
The finite zeros are the eigenvalues of the pair (Af,Ef)
The matrix Af is
0.7705
The matrix Ef is
0.7705
Finite zeros
real part imag part
1.0000
The number of infinite zeros = 2
0 infinite zero(s) of order 1
1 infinite zero(s) of order 2
The number of infinite Kronecker blocks = 5
Multiplicities of infinite eigenvalues of [A-lambda*E,B;C,D] are
1 1 1 1 3
The number of right Kronecker indices = 1
Right Kronecker indices of [A-lambda*E,B;C,D] are
2
The number of left Kronecker indices = 1
The left Kronecker indices of [A-lambda*E,B;C,D] are
1